
J
H
E
P
0
4
(
2
0
0
6
)
0
2
6

Published by Institute of Physics Publishing for SISSA

Received: February 18, 2006

Revised: March 20, 2006

Accepted: April 5, 2006

Published: April 13, 2006

An algorithm to construct Gröbner bases for solving
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1. Introduction

In the framework of perturbation theory quantum-theoretical amplitudes are written as

sums of Feynman integrals that are constructed according to Feynman rules. After a tensor

reduction based on projectors is performed, each Feynman graph generates various scalar

Feynman integrals with the same structure of the integrand and with various distributions

of the powers of propagators (also called indices):

F (a1, . . . , an) =

∫

· · ·

∫

ddk1 . . . ddkh

Ea1

1 . . . Ean
n

. (1.1)

Here ki, i = 1, . . . , h, are loop momenta and the denominators Er are either quadratic or

linear with respect to the loop momenta pi = ki, i = 1, . . . , h or to the independent external

momenta ph+1 = q1, . . . , ph+N = qN of the graph. Irreducible polynomials in the numerator

can be represented as denominators raised to negative powers. Usual prescriptions k2 =

k2 + i0, etc. are implied. The dimensional regularization [1] with d = 4 − 2ε is assumed.

In today’s perturbative calculations, when one needs to evaluate millions of Feynman

integrals (1.1), a well-known strategy is to derive certain relations between Feynman inte-

grals of a given family without calculating them, and then to apply the latter recurrently.

As a rule one applies the so-called integration by parts (IBP) relations [2]

∫

. . .

∫

ddk1d
dk2 . . .

∂

∂ki

(

pj

1

Ea1

1 . . . Ean
n

)

= 0 . (1.2)

After differentiating, the scalar products ki ·kj and ki · qj are expressed linearly in terms of

the factors Ei of the denominator, and one obtains the IBP relations in the following form:

∑

ciF (a1 + bi,1, . . . , an + bi,n) = 0 , (1.3)
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where bi,j are integers, ci are polynomials in aj , d, masses mi and kinematic invariants,

and F (a1, . . . , an) are Feynman integrals (1.1) of a given family.

One tries to use IBP relations to express a dimensionally regularized integral of a given

family as a linear combination of some ‘irreducible’ integrals also called master integrals.

Recently there have been made several attempts to systematize this reduction procedure,

and, in particular, the so-called Laporta’s algorithm [3, 4] (there exists its implementation

available to all [5]), as well as Baikov’s method (see [6, 7] and chapter 6 of [8]), have been

introduced. A different approach to this problem is connected with the use of Gröbner

bases [9], which was first applied in [10] where IBP relations were reduced to differential

equations. The direct use of non-commutative Gröbner bases in the algebra generated by

shift operators was first suggested in [11, 12]. In our previous paper [13] (see also [14]

for a brief review) we presented still another approach based on Gröbner bases. It is

characterized, among other things, by the use of additional information on a given family

of Feynman integrals, in particular the boundary conditions, i.e. the conditions of the

following form:

F (a1, a2, . . . , an) = 0 when ai1 < 0, . . . aik < 0 (1.4)

for some set of indices ij (e.g., we always have F (a1, a2, . . . , an) = 0, if all ai are non-

positive). Since the time of our previous publication I have made this algorithm more

efficient by the introduction of the so-called s-form. Moreover, the algorithm now works

about ten times faster. Here the latest version of the algorithm is described in detail (the

paper [13] was designed to give an introduction to the method, and a number of definitions

in it were not formal).

Let us describe the basic idea of the algorithm. It consists of two parts: the construction

of the so-called sector-bases, or s-bases, and the s-reduction. To use this method for

calculating Feynman integrals of a given a family one has to construct the s-bases in the

ideal generated by IBP relations with the use of the first part of the algorithm. After that

the bases are used in the s-reduction part to reduce any given integral to master-integrals.

In section 2 I introduce some notions that are necessary to describe the algorithm. In

section 3 I explain how the s-reduction works for a given set of bases (not necessarily the

s-bases, however, only if the s-bases are used in the algorithm, one has a finite number of

master integrals). In section 4 I describe the algorithm used to construct the s-bases, and

in section 5 the example of the use of the algorithm is given.

2. Preliminaries

To describe the algorithm we have to introduce some notions. Let K be the field of rational

functions of physical variables mi, qi · qj, d, and A be the algebra1 over K generated by

elements Yi, Y −
i and Ai with the following relations:

YiYj = YjYi, AiAj = AjAi, YiAj = AjYi + δi,jYi, (2.1)

Y −
i Y −

j = Y −
j Y −

i , Y −
i Yj = YjY

−
i , Y −

i Aj = AjY
−
i − δi,jYi, Y −

i Yi = 1

1An algebra over a field is a vector space over this field and a ring at the same time.
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where δi,j = 1 if i = j and 0 otherwise. For convenience we will write (Y −
i )k = Y −k

i . Let

F be the field of functions of n integer arguments a1, a2, . . . , an. The algebra A acts on

this field2, where

(Yi · F )(a1, a2, . . . , an) = F (a1, . . . , ai−1, ai + 1, ai+1, . . . , an) , (2.2)

(Ai · F )(a1, a2, . . . , an) = aiF (a1, a2, . . . , an) .

The left-hand sides of relations (1.3) can be represented as elements of the algebra A

applied to F ; we will denote these elements by f1, . . . , fk. Now, for F (a1, . . . , an) defined

by (1.1), we have

fi · F = 0 or (fi · F )(a1, . . . , an) = 0 (2.3)

for all i. Let us generate a (left) ideal I by the elements f1, . . . , fk
3. We will call I the

ideal of the IBP relations. Obviously,

f · F = 0 , or (f · F )(a1, . . . , an) = 0 for any f ∈ I . (2.4)

Let us consider the set D with elements {c1, c2, . . . , cn} where all ci are equal to 1 or

−1. The elements of this set will be called directions. For any direction ν = {c1, . . . , cn} we

will consider a region σν = {(a1, . . . , an) : (ai − 1/2)ci > 0} and call it a sector. Obviously

the union of all sectors contains all integer points in the n-dimensional vector space and

the intersection of any two sectors is an empty set. For a sector σν we will say that its

direction is ν.

We will say that an element X ∈ A is written in the proper form if it is represented as

X =
∑

rj(A1, . . . , An)
∏

i

Y
di,j

i , (2.5)

where rj are polynomials (with coefficients in K) and di,j are integers. (So, all the operators

Ai are placed on the left from the operators Yi.) Obviously any element X ∈ A has a unique

proper form. We will say that an element of A is a monomial if its proper form has a single

non-zero coefficient function rj.

Let N
n = {(b1, . . . , bn)} where all bi are integers and bi ≥ 0. This is a semi-group4

(with respect to (b1, . . . , bn) + (b′1, . . . , b
′
n) = (b1 + b′1, . . . , bn + b′n)). We will say that an

ordering on N
n (denoted with the symbol Â) is proper if

i) for any a ∈ N
n not equal to (0, . . . 0) one has a Â (0, . . . 0)

ii) for any a, b, c ∈ N
n one has a Â b if and only if a + c Â b + c.

Let us fix a direction ν = {c1, c2, . . . , cn} We will say that the ν-degree of a mono-

mial r(A1, . . . , An)
∏

i Y
di

i is {d1c1, . . . , dncn} if all the products dici are non-negative and

undefined otherwise.

2(i) for any a ∈ A and f ∈ F we have an element a · f ∈ F ; (ii) for any a, b ∈ A and f, g ∈ F we have

(a + b) · (f + g) = a · f + a · g + b · f + b · g; (iii) for any a, b ∈ A and f ∈ F we have (ab) · f = a · (b · f).
3A (left) ideal I in an algebra A is such a set that (i) for any a ∈ A and b ∈ I we have ab ∈ I; (ii) for

any a, b ∈ I we have a + b ∈ I.

An ideal generated by a set of elements is the minimal possible ideal containing them. For a finite set of

elements f1, . . . , fk it is the set of all linear combinations a1f1 + · · · + akfk for ai ∈ A.
4A semi-group is a set with an associative binary operation.
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Let us choose a proper ordering. Take an element X ∈ A and write it in its proper

form. Consider the set of ν-degrees of all the monomials in the decomposition of X. If this

set is empty (all the degrees are undefined) we will say that the ν-highest degree of X is

undefined as well, otherwise we will say that ν-highest degree of X is the highest element

of that set in terms of the fixed ordering.

We will say that a direction {c1, . . . cn} is lower than {c′1, . . . c
′
n} if c1 ≤ c′1, . . . , cn ≤ c′n

and they are not equal. The same is said about the corresponding sectors. We will say

that a sector σ is trivial if all the integrals F (a1, . . . , an) are zero for (a1, . . . , an) ∈ σ due

to boundary conditions (1.4). The same will be said about the direction of the sector.

3. The s-reduction algorithm

Suppose that for each non-trivial sector σν we are given an ordering and a finite basis

{Xν,1, . . . ,Xν,kν
} ⊂ I.

We are going to describe an algorithm called s-reduction.

Input: a linear combination of integrals F (a1, . . . , an).

Output: another linear combination of integrals containing the integrals that could

not be reduced by these bases (an integral F (a1, . . . , an) is called irreducible for the given

sets of orderings and bases if the ν-reduction of F (a1, . . . , an) returns F (a1, . . . , an), where

ν is such a direction that (a1, . . . , an) ∈ σν).

If one chooses properly the orderings and the elements X then there is a finite number of

irreducible integrals, therefore the s-reduction will always output a combination of them but

such a choice is a non-trivial procedure. The algorithm that might construct such elements

will be described in the next section. But first we have to explain what s-reduction is.

We will illustrate our method with an example in section 5. More examples can be

found at my webpage http://www.srcc.msu.ru/nivc/about/lab/lab4 2/index eng.htm.

S-reduction.

1. L=Input; M = 0.

2. While L 6= 0

3. Let S be the set of sectors that contain some point (a1, . . . , an) where

F (a1, . . . , an) has a non-zero coefficient in the decomposition of L.

4. Let ν be a direction such that σν ∈ S and there is no other sector

σν′ ∈ S such that σν is lower than σν′ .

5. Let L = L1 + L2 where L1 contains those and only those

F (a1, . . . , an) where (a1, . . . , an) ∈ σν .

6. N = ν-reduction of L1 by {Xν,1, . . . ,Xν,kν
} (to be described below)

7. Let N = N1 + N2 where N1 contains those and only those

F (a1, . . . , an) where (a1, . . . , an) ∈ σν .

8. L = L2 + N2; M = M + N1.

9. Output=M
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In a few words we are using the ν-reduction of X starting from higher sectors. Basically,

it is a formalization of the standard method people use to solve the IBP relations “by hand”.

Now we are going to describe what ν-reduction is.

Input: direction ν; an element L that is a linear combination of integrals F (a1, . . . , an)

such that all (a1, . . . , an) ∈ σν ; a finite basis {X1, . . . ,Xk} ⊂ I.

Output: another linear combination of integrals F (a1, . . . , an) such that (a1, . . . , an) ∈

σν′ where ν ′ = ν or ν ′ is lower than ν.

ν-reduction.

1. Let p = {p1, . . . , pn} = {(c1 + 1)/2, . . . , (cn + 1)/2}, where ν = {c1, . . . , cn}.

2. Set Y = 0.

3. Let X ∈ A be the element obtained by replacing F (a1, . . . , an)

with Πi Y ai−pi

i in L. One has L = (X · F )(p).

4. While X 6= 0

5. Let U be the highest term of X, U = C ΠiY
dici

i .

6. For all possible products T = (ΠiY
xi

i ) · Xj such that the proper form of T

has a non-zero coefficient at ΠiY
dici

i

Do (there is a finite number of possibilities)

7. Replace all Ai in the proper form of T with pi.

8. If for some j such that cj = −1 there is a term of T with Yj

in a positive degree then continue the cycle with the next element.

9. If the coefficient C ′ of T at ΠiY
dici

i is equal to zero

then continue the cycle with the next element.

10. Take Z = X − (C/C ′)T . Let Z1 be the ν-sector part of Z

(the sum of monomials in the decomposition of Z

that have a defined degree) and Z2 = Z − Z1.

11. If the ν-highest degree of Z1 is lower than the

ν-highest degree of X then replace X with Z1,

Y with Y + Z2 and go to the start of the While cycle (step 4).

12. Replace X with X − U and Y with Y + U

13. Return (Y · F )(p)

The idea of the algorithm is to represent a given linear combination as an element

X of A being applied to F and the value being taken in the corner of the sector. Then

one tries all possible transformation of the obtained element that lower the ν-degree of X

(this is a generalization of the standard reduction procedure). The point is that through

all the algorithm the value ((X + Y ) · F )(p) is constant. This is based on the fact that

(Z · F )(p) = 0 for any Z ∈ I. Note that the elements X and Y in their proper forms do

not depend on Ai (because of the replacement in step 7). Therefore in step 10 we have

C ′ ∈ K and C ′ 6= 0, so the division is possible. The step 12 is the place where the terms

that cannot be reduced are “moved” from X to Y . If the basis is chosen properly, those

terms correspond to a finite number of master integrals.

– 5 –
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4. Constructing s-bases

Let us fix a non-trivial direction ν = {c1, c2, . . . , cn} and let p = {p1, . . . , pn} = {(c1 +

1)/2, . . . , (cn + 1)/2}. Our task is to construct an s-basis for this direction, i.e. such a

basis {X1, . . . ,Xk} ⊂ I that the ν-reduction for this sector has only a finite number of

irreducible integrals.

The relations (1.3) provide us a basis of I but generally it is not an s-basis. Moreover,

one has to choose an appropriate ordering.

We are going to describe an algorithm that takes the relations (1.3) as input and aims

to construct an s-basis. The results of the algorithm greatly depend on the choice of the

ordering and in complicated cases it is difficult to find one allowing to construct the needed

basis. Now suppose we have fixed an ordering and an initial basis {X1, . . . ,Xk} ⊂ I. Let

us describe our algorithm.

First of all let us define the s-form of an element X ∈ A (note that this definition and

some more definitions below depend on the choice of the direction ν, but it is fixed in this

section). So, the s-form of an element X ∈ A is an element T of the form (ΠiY
xi

i ) · X

satisfying the following properties:

(i) The ν-highest degree of T is defined and for any integer (y1, . . . , yn) such that y1c1 ≥

0, . . . , yncn ≥ 0 the ν-highest degree of (ΠiY
yi

i ) · T is equal to the ν-highest degree of T

plus (y1, . . . , yn);

(ii) The ν-highest coefficient of (ΠiY
yi

i ) ·T does not vanish when A1 = p1, . . . , An = pn for

all integer (y1, . . . , yn) such that y1c1 ≥ 0, . . . , yncn ≥ 0;

(iii) For all j such that cj = −1 the degrees of Yi in the proper form of T are non-positive;

(iv) The numbers (c1x1, . . . , cnxn) are minimal possible for all (x1, . . . , xn) satisfying the

properties (i)-(iii).

Let us reformulate this definition less formally. The properties (i), (ii) mean that this

element has “enough” terms whose degrees lie in the sector σν . It is needed so that this

element can be used for the ν-reduction. The property (iii) is required to control that

the use of this element in the ν-reduction does not output any elements that lie in sectors

higher than ν.

Through all the algorithm we will store a basis of I consisting of elements in the s-form.

Let us describe how the reduction of an element of A modulo a basis {X1, . . . ,Xk} ⊂ I

works.

Reduction.

1. Y =s-form of Input.

2. If Y = 0 then Return 0.

3. For all j such that all the numbers di − d′i are positive, where (d1, . . . , dn) is

the ν-highest degree of Y and (d′1, . . . , d
′
n) is the ν-highest degree of Xj

Do

4. Let Z = C ′ Y − C ΠiY
ci(di−d′i)
i · Xj , where C is the ν-highest coefficient

of Y and C ′ is the ν-highest coefficient of (ΠiY
ci(di−d′i)
i ) · Xj .

5. Z = s-form of Z.

– 6 –
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6. If the ν-highest degree of Z is lower than ν-highest degree of Y then

replace Y with Z and Go to step 2.

8. Return Y .

It is easy to see that this reduction stops working after a finite number of steps (there

can’t be an infinite sequence of decreasing degrees). Basically, this procedure is close to

the standard reduction procedure in Buchberger algorithm. The difference is the usage of

s-forms and the fact that the elements Yj can have both positive and negative degrees.

Now we can describe the main algorithm. As it has been said earlier, it starts from

a basis of I, moreover, all elements are taken in their s-forms. The goal of the algorithm

is to construct another basis such that the ν-reduction for this sector has only a finite

number of unreducible integrals. Therefore, after an element is added to the basis or a

basis element is replaced we are performing a test to verify this condition (Completion

Criteria). It consists of checking, whether for any j there is such m that for all integer

l ≥ m the element F (p1, . . . , pj−1, pj + lcj , pj+1, . . . , pn) can be reduced modulo this basis

in the ν-reduction algorithm.

Here is the main algorithm:

1. While not Completion Criteria

2. If there is an element in the basis that can be reduced by some other

element, replace it with the result of the reduction and restart the cycle.

3. Choose a pair of elements of the basis X ′ and X ′′.

4. Choose the smallest possible integers (d1, . . . , dn) such that dj ≥ d′j and

dj ≥ d′′j , where (d′1, . . . , d
′
n) is the ν-highest degree of X ′ and (d′′1 , . . . , d

′′
n)

is the ν-highest degree of X ′′.

5. Evaluate Z = C ′′ ΠiY
ci(di−d′i)
i · X ′ − C ′ ΠiY

ci(di−d′′i )
i · X ′′, where C ′ is the

ν-highest coefficient of (ΠiY
ci(di−d′i)
i ) · X ′ and C ′′ is the ν-highest

coefficient of (ΠiY
ci(di−d′′i )
i ) · X ′′, — the s-polynomial of X ′ and X ′′.

6. Z = Reduction of Z (the previous algorithm).

7. If Z 6= 0 then add Z to the basis.

When implementing the present algorithm it is natural to store the information about

the pairs where the s-polynomials have been evaluated to avoid repeating the same calcu-

lations. Of course, the choice performed at line 3 might be different, and the algorithm

effectiveness greatly depends on this choice. One more improvement of the algorithm is

the use of the symmetries of the diagram. Instead of evaluating an s-polynomial one might

take an element symmetric to some element of the basis and reduce it the same way. All

this is realized by introducing a function on the set of pairs of elements of the basis and

another one on the set of all possible symmetric element to the elements of the basis. So,

at line 3 we are choosing such an element to evaluate, that the value of this choice function

is minimal. Currently the algorithm uses the choice function intended to minimize the

degree of the resulting element, and it already makes the algorithm effective. The work on

finding the optimal choice functions is in progress.

– 7 –
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5. Example

Let us illustrate this method with a simple example. Let us consider the propagator

integrals with the masses m and 0.

F (a1, a2) =

∫

ddk

(k2 − m2)a1 [(q − k)2]a2

. (5.1)

The integrals are zero if a1 ≤ 0. The corresponding IBP relations generate the following

elements:

f1 = d − 2A1 − A2 − 2m2A1Y1 − m2A2Y2 + q2A2Y2 − A2Y2Y
−1
1

f2 = A2 − A1 − m2A1Y1 − q2A1Y1 − m2A2Y2 + q2A2Y2 − A2Y2Y
−1
1 + A1Y1Y

−1
2 .

The sectors σ{−1,−1} and σ{−1,1} are trivial, thus we are going to construct two s-bases.

Let us start with the sector σν for ν = {1, 1}. We will use the lexicographical ordering.

The ν-highest degrees of both f1 and f2 are equal to (1, 0), the ν-highest coefficients are

−2m2A1 and −(m2 + q2)A1 correspondingly, therefore the elements f1 and f2 satisfy the

first three conditions in the definition of the s-form. It is easy to see that multiplying f1

or f2 by Y −1
1 or Y −1

2 will result in an element not satisfying these requirements, therefore

f1 and f2 coincide with their s-forms.

Let us show that any element F (1 + t, 1) for t > 0 can be reduced modulo f1 in the

ν-reduction algorithm (this is one of the two requirements in the Completion Criteria).

The element X on line 3 of the algorithm is Y t
1 and coincides with its highest term. Let us

take T = Y t−1
1 f1 on line 6. The ν-highest degree of this element is (t, 0) — the same that

of X, therefore we can make a reduction step.

We will skip the proof that the elements F (1+t, 1) for t > 0 cannot be reduced modulo

f1 or f2 in the ν-reduction algorithm (that means that the Completion Criteria does not

hold for the initial bases). Instead of that we are going to make a step of the main algorithm

and construct a new element f3 that will work for those integrals.

The element Z on line 5 of the main algorithm is equal to

Z = −dm2A1 − dq2A1 + 2q2A2
1 + 3m2A1A2 + q2A1A2 + (2m2A2

1Y1)/Y2 − m4A1A2Y2

+2m2q2A1A2Y2 − q4A1A2Y2 − (m2A1A2Y2)/Y1 + (q2A1A2Y2)/Y1.

This element does not satisfy the first requirement in the definition of the s-form; the s-form

of Z is equal to Y2Z.

Y2Z = 2m2A1Y1 + 3m2Y2 − dm2Y2 + q2Y2 − dq2Y2 + 2q2A1Y2 + 3m2A2Y2 + q2A2Y2

−m4Y 2
2 + 2m2q2Y 2

2 − q4Y 2
2 − m4A2Y

2
2 + 2m2q2A2Y

2
2 − q4A2Y

2
2

−(m2Y 2
2 )/Y1 + (q2Y 2

2 )/Y1 − (m2A2Y
2
2 )/Y1 + (q2A2Y

2
2 )/Y1.

The ν-highest degree of this element is (1, 0), and after one reduction step we obtain

f3 = −m2 + dm2 + q2 + dq2 − 2q2A1 − 2m2A2 − 2q2A2(A2 − 1)/Y1

+(2A1 + A2 − d − 1)/Y2 + (m2 − q2)2A2Y2 + (m2 − q2)A2Y2/Y1.

– 8 –
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Following the same way as before we show that any element F (1, 1 + t) for t > 0 can be

reduced modulo f3 in the ν-reduction algorithm. This means that the Completion Criteria

holds and we have constructed an s-basis f1, f2, f3.

However, the element F (1, 1) cannot be reduced in the same way for the highest

coefficients of all three elements in the bases vanish when applied to this point. This

means that F (1, 1) is a master integral.

Let us turn to ν = {1,−1}. The elements f1 and f2 again coincide with their s-forms.

However, their ν-highest degrees are now (1, 0) and (1, 1) correspondingly. Thus we can

reduce the element f2. As a result of the reduction procedure it is replaced with the element

f4 = m2 − dm2 − q2 − dq2 + 2q2A1 + 2m2A2 + 2q2A2 + (1 + d − 2A1 − A2)/Y2 −

(m2 − q2)2A2Y2 + (1 − A2)/Y1 + (q2 − m2)A2Y2/Y1.

Following the same way as in the first sector we show that Completion Criteria holds for

{f1, f4} in this sector. The element F (1, 0) also turns out to be a master integral.

Let us now illustrate how the s-reduction works and reduce F (1, 2) to master integrals.

We start with ν = {1, 1} and apply the ν-reduction to F (1, 2). This corresponds to X = Y2

on line 3 in the ν-reduction algorithm. On line 10 we obtain

Z = ((3 − d)(m2 + q2) + (d − 2)/Y2))/(m
2 − q2)2.

Thus Z1 = (3 − d)(m2 + q2)/(m2 − q2)2 and Z2 = (d − 2)Y2/(m
2 − q2)2. Z1 cannot be

reduced any longer so that the algorithm returns

(Z · F )(p) = (3 − d)(m2 + q2)F (1, 1)/(m2 − q2)2 + (d − 2)F (1, 0)/(m2 − q2)2.

The attempt to apply the ν-reduction for ν = {1,−1} turns out to be useless, for F (1, 0)

is a master integral, therefore the answer is

F (1, 2) = (3 − d)(m2 + q2)F (1, 1)/(m2 − q2)2 + (d − 2)F (1, 0)/(m2 − q2)2.

6. Conclusion

The algorithm described above is close to Buchberger algorithm, since it is based on cal-

culating s-polynomials and reductions. However, the difference is significant. The intro-

duction of the s-form leads to a situation when generally one can have two elements of

the same degree that cannot be reduced one by another in this algorithm. Therefore, a

standard proof that the algorithm has to stop at a certain point is of no use here. To prove

that this algorithm stops for any given family of Feynman integrals still remains a problem

that, hopefully, will be solved in the nearest future. On the other hand, the present algo-

rithm appears to be much more efficient to solve reduction problems for Feynman integrals

than more or less straightforward generalization of Buchberger algorithm (see, e.g., [11]).

This was demonstrated in [13] where the reduction problem was solved for Feynman inte-

grals relevant to the two- and three-loop static quark potential, with the number of indices

n = 7. (The well-known two loop results [15] were reproduced.) New results obtained with
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the help of this algorithm in cases with the number of indices n = 9 are to be published

soon [16]. Preliminary analysis shows that the algorithm can be successfully applied to

problems with the number of indices up to n = 12.

An implementation of the s-reduction part of the algorithm in Mathematica can be

found at http://www.srcc.msu.ru/nivc/about/lab/lab4 2/index eng.htm, together

with a number of examples including those s-bases that have been constructed for the

problems considered in [13].
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